Finding Similar Items:
Locality Sensitive Hashing



Pinterest Visual Search

Given aguery image patchfind similar images
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How does it work? @
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Collect billions of images
Determine feature vector for each image (4k dim’
Given a query Q find, nearest neighbors FAST
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Application: Visual Searc

Visually similar results
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A Common Metaphor

Many problems can be expressed as
TAYRAY3I GaAYAfINE a8
Find nearneighbors inhigh-dimensionalspace
Examples:
Pages with similar words
For duplicate detection, classification by topic
Customers who purchased similar products
Products with similar customer sets
Images with similar features
Image completion
Recommendations and search
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Problem for today’s lecture

Given: High dimensional data poins he M8

For exampleimage is a long vector of pixel colors
And some distance functio® e he

GKAOK ljdzZt yGATASE & Enfle 4
Goal:Findall pairs of data points e ho that
are within distance threshol®( e.he

Note: Nave solution would take|=(J )
whered is the number of data points

MAGIC This can be done if(2 )!' How??
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LSH: The Bigfoot of CS

LSH is really a family of related technigues

In general, one throws items into buckets usin
3SOSNIf RAFFSNBY O aKI
You examine only those pairs of items that sh
a bucket for at least one of thesmshings
Upside:Designed correctly, only a small fractic
of pairs are ever examined

Downside:There ardalse negativeg pairs of
similar items that never even get considered



Motivating Application:
Finding Similar Documents



Motivation for Min-Hash/LSH

Suppose we need to find neaduplicate
documents among million documents

Navely, we would have to computeairwise
similaritiesfor every pair of docs

4l ¥ £ p% camparisons

At 10 secs/day and 10comparisons/sec,
It would take5 days

Ford YAfTEtA2YSE AG (F1Sa

Similarly, you have a dataset of 10m images,
quickly find the most similar to query image
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3 Essential Steps for Similar Docs

1.

3.

71412018

Shingling:Converts a document into a set
representation (Boolean vector)

Min-Hashing:Convert large sets to short
signatures, while preserving similarity

Locality-Sensitive HashingrFocus on
pairs of signatures likely to be from
similar documents

A Candidate pairs!



The Big

Picture

T

Candidate
\ pairs:

: Locality- :
Docu- __||gp ngling ] : Mln. ] | Sensitive thoge pairs
ment Hashing Hashing of signatures
/ / that we need
to test for
The set Signatures: similarity
of strings short integer
of length k vectors that
that appear represent the
in the docu- sets, and
ment reflect their
similarity
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Docuw
ment

The set

of strings
of lengthk
that appear
in thedocuw
ment

Shingling




Step 1:Shingling:Converts a document into a se
A k-shingle(or k-gram) for a document is a
sequence ok tokensthat appears in the doc

Tokens can beharacterswordsor something else,
depending on the application

Assume tokens = characters for examples
Tocompress long shinglesve canmashthem to
(say) 4 bytes
Represent a document by the set of hash
values of Itsk-shingles
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